7. VITAMINS

definition (attributes)

- organic low molecular weight compounds
- function as biocatalysts (regulation of metabolism)
- autotrophic organisms: biosynthesis
- heterotrophic organisms: partly biosynthesis

food

gut microorganisms

terminology and classification

• formerly connection with illnesess antixerophtalmic factor antiscorbutic factor antirachitic factor antiberiberi factor coagulation factor

- letters of alphabet, numbers
- simple trivial names, systematic names

water soluble (hydrophilic)

- 1. thiamine (aneurin, B₁)
- 2. riboflavin (lactoflavin, B₂, G)
- 3. niacin (nicotinic acid, B₃; nicotinamide, PP)
- 4. pantothenic acid (B₅)
- 5. pyridoxine (~al, ~ol, ~amine, adermin, B₆)
- 6. biotin (H)
- 7. folacin (B_c, B₉)
- 8. cyanocobalamin (corinoids, B₁₂)
- 1.- 8. = group of vitamins B (B-complex)
- 9. ascorbic acid (vitamin C)

exogenity and essentiality

thiamine niacin biotin corrinoids vitamin K vitamin D very little by gut microorganisms biosynthesis from Trp (1 mg ~ 60 mg) gut microorganisms gut microorganisms gut microorganisms vitamin or hormone

- water soluble: excretion by urine, main losses by leaching, cofactors (coenzymes, prosthetic groups)
- fat soluble: storage in liver, main losses by oxidation, possible hypervitaminosis, other function

terminology	
hypovitaminosis	insufficient intake
avitaminosis	temporary absolute shortage (malfunction of biochemical functions)
hypervitaminosis	excessive intake (failure of functions), A, D
retention	maintaining of original amounts
restitution	addition over original amounts

A₁retinol C ascorbic acid D calciferols B₁ thiamine K₁ fylloquinone

fat soluble (lipophilic)

10. retinoids (A)11. calciferols (D)12. tocopherols (E)13. phylloquinons (K)

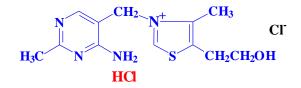
fortification	addition at higher amounts than original ones
provitamin	precursor (biologically inactive substance)
antivitamin	substances blocking biochemical usage of vitamin (vitamin antagonists)

amount (content in food) (book 2, tab. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8)

- biological units
- international units

vitamin A	1 IU = 0.3 μ g retinol = 0.6 μ g β -carotene 1 RE = 1 μ g retinol = 3.33 IU
vitamin D	1 IU = 0.025 μ g vitamin D ₃ (or D ₂)
vitamin E	1 IU = 1 mg all-rac α -tocopheryl-acetate

- mass units
- rich sources of vitamins
- important sources of vitamins


required amount

type of organism, age, physiological state, advisable daily intake

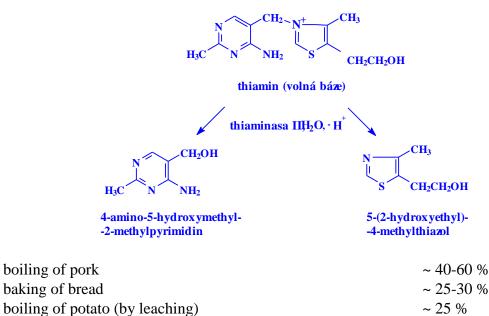
application

- additives for restitution and fortification all vitamins
- colouring matters riboflavin, provitamins A
- antioxidants vitamin C, provitamins A, vitamin E

thiamine

- free
- bound (phosphates: mono-, di-, triphosphate, diphosphate = cofactor of enzymes)
- other forms (thiol, disulfide)

sources (mg / 100 g) (book 2, tab. 5.1)


• legumes	0,1-1 mostly free thiamine
• pork	1 mostly diphosphate
• beef	0,04-0,1
• fruits	0,04-0,1
• vegetables	0,03-0,15
• potato	0,05-0,18

covered by (%)

• cereals products (bread)	43 (20)
• meat and meat products	18-27
• milk and dairy products	8-14
• potato	10
• legumes	5
• vegetables	12

- fruits
- eggs

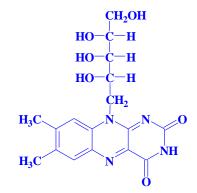
reactions

4 2

100 %

• preservation of non-acid foods by SO₂

applications


losses

•

.

fortification (restitution): wheat flour, breakfast cereals, rice

riboflavin

oxidised form (isoalloxazine, ribitol)

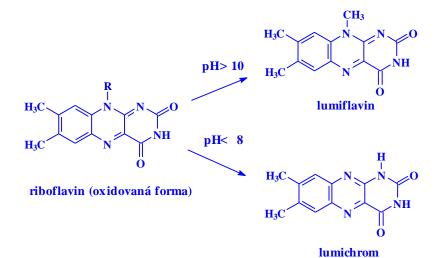
- free, ox. form flavoquinone, red. form flavohydroquinone (leucoflavin)
- bound (proteins), cofactor flavoproteins (FMN, FAD)
- other forms

sources (mg/100g) (book 2, tab. 5.1)

٠	meat	0,2
٠	liver	3
٠	milk	0,2
٠	cheese	0,5
٠	beer	0,05 (difference from thiamine)

covered by (%)

• milk, cheeses 36% mostly riboflavin, bound on α - a β -casein


- meat 19% mostly FMN, FAD
- cereals 15%
 - eggs 8% mostly riboflavin

8%

vegetables

reactions

photodegradation

losses

- milk, wine: sun off-flavour
- formation of ${}^{1}O_{2}$ (singlet oxygen)
- destruction of vitamin C, retinol, Met

application

- fortification
- colouring matter

niacin

- free (low quantity) (acid: plants, amide: animals)
- bound (to proteins): NAD (DPN) and NADP (TPN)
- other forms

trigonelline (coffee, legumes, cereals) sorghum, corn

trigonelline

sources (mg / 100 g) (book 2, tab. 5.1)

٠	meat		5-15
٠	legumes	s, fruits, vegetables	0,7-2
٠	eggs		0,1
٠	coffee	roasted	50
		green	2

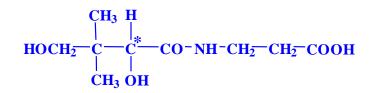
covered by (%)

•	meat	33 %
•	milk	13 %
•	cereals	21 %
•	potatoes	9 %

reactions

• limited hydrolyses of amide, acid stable

losses


• by leaching

application

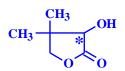
fortification

• white flour

pantothenic acid

- free, (*R*)-isomer
- bound (CoA, ACP)

sources (mg / 100 g) (book 2, tab. 5.1)


- meat, fish
- cheeses (milk, little)
- whole cereal products
- legumes
- fruits, vegetables (little)

covered by (%) sufficient

reactions

 $\begin{array}{c} CH_3 H \\ | & | \\ HOCH_2 - C - C - C - COOH \\ | & | \\ CH_3 OH \end{array}$

NH₂-CH₂-CH₂-COOH

pantoic acid

β-alanine

pantolactone

pyridoxine

- free
- their 5'-phosphates
- 5-*O*-β-D-glucoside of pyridoxol (5-70 % in cereals, fruits, vegetables)

sources (book 2, tab. 5.1)

- animal food: pyridoxal, pyridoxol meat, yolk
- plant food: pyridoxal, pyridoxamine cereals

covered by (%)

•	meat	40
•	vegetables	22
•	milk	12
•	cereals	10
•	fruits	8
•	legumes	5
•	vegetables	2

reactions

- Maillard reaction
- transamination

losses

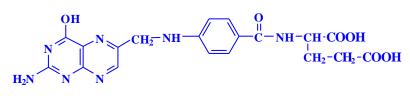
• powder milk 30-70% (reaction with Lys and Cys)

application

fortification

• baby food

biotin

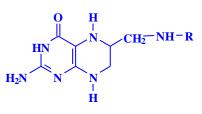


(+)-biotin, (*3aS*, *4S*, 6*aR*)-isomer

broadly distributed deficiency = raw eggs (avidine)

sources (book 2, tab. 5.1)

folacin

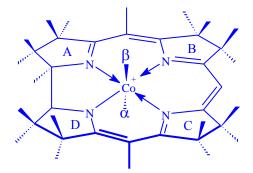


CH=O (10) CH₃ (5)

3-8 molecules of Glu

Glu

pteroic acid pteroylglutamic (folic acid) tetrahydrofolic acid

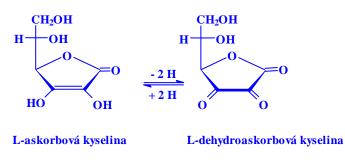


4-aminobenzoic acid

sources mostly leaf vegetables (book 2, tab. 5.1)

corrinoids

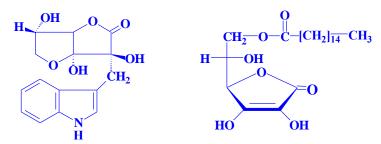
substituted corrin cycles with central Co atom, 4 pyrrols without CH bridge between cycles A-D


central Co atom: 6 coordination bonds cobalamins $\alpha = 5,6$ -dimethylbenzimidazole $\beta = OH$ H_2O CH_3 CN

hydroxocobalamin aquocobalamin methylcobalamin cyanocobalamin

deoxyadenosylcobalamin coenzym B12

sources (book 2, tab. 5.2), not present in foods of plant origin


vitamin C (ascorbic and dehydroascorbic acid, redox system)

4 stereoisomers

- free
- bound

ascorbigen v brassica vegetables ascorbylpalmitate (antioxidant)

sources (mg / 100 g) (book 2, tab. 5.3)

fruits	
rose hips	250-1000
blackcurrant	110-300
strawberry	40-70
citrus fruits	24-70
apples	1,5-5
vegetables	
parsley	150-270
peppers	62-300
cabbage	17-70
potatoes	8-40
covered by (%)	
potatoes	24
leaves vegetables	13
fruits	34
milk	9 (5-20 mg/l)

reactions

- losses by leaching
- presence of O₂: enzymatic oxidation and autoxidation
- absence of O₂: degradation catalysed by acids total losses: 20-80 %

enzymatic oxidation

ascorbatoxidase, ascorbase, peroxidase

final reaction: 2 H₂A + O₂ \rightarrow 2 A + 2 H₂O

prevention: (precooking), addition of SO2

autooxidation

catalysed by metals: Fe^{3+} , Cu^{2+} final reaction: $2 H_2A + O_2 \rightarrow 2 A + 2 H_2O$

mechanisms:

 $\begin{array}{l} H_2A+O_2 \rightarrow A+H_2O_2 \\ H_2A+H_2O_2 \rightarrow A+2 \; H_2O \end{array}$

consequences:

oxidation of others components by H2O2 (myoglobin, lipids, anthocyanes)

prevention:

- contact with O₂ (air) inert atmosphere, deaeration, glucoseoxidase+catalase, HSO₃⁻, fermentation
- Fe³⁺, Cu²⁺ complexing agents
- unfavourable conditions (lower a_w, pH)

degradation catalysed by acids

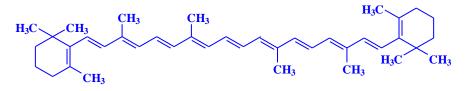
main product: furan-2-carbaldehyde

application

- vitamin
- antioxidant
- complexing agent

in food technologies

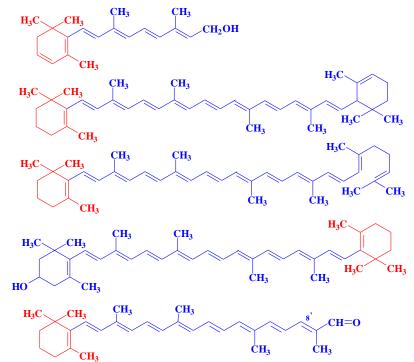
- canning (prevention of aroma, colour, removal of O₂, inhibition of browning)
- fermentation (prevention of turbidity)
- meat (improvement and a acceleration of curing, NO₂⁻)
- fats (antioxidant)
- cereals (formation of disulphide bridges in protein dough)


vitamin A

retinol

CH₃ CH₃ H₃C CH₃ CH₂OH

all-*trans*-retinol, vitamin A₁ (diterpene)


provitamins A (retinoids, isoprenoids)

β-carotene (tetraterpene)

further active substances (β -ionon cycle)

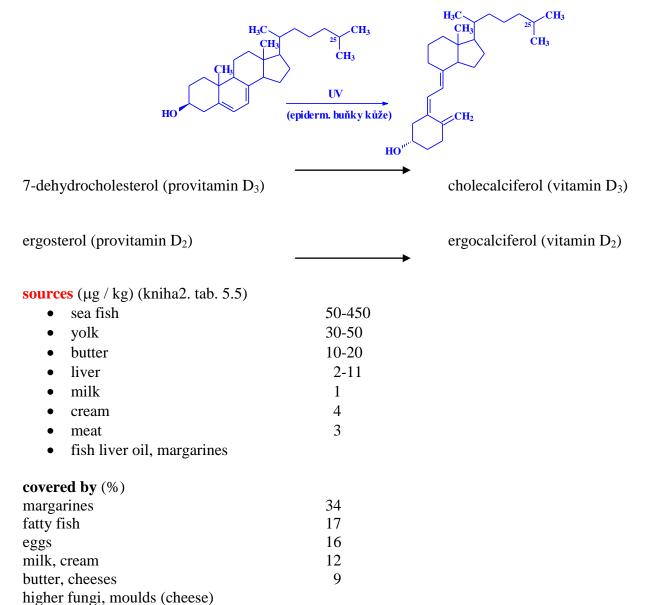
- 3-dehydroretinol (vitamin A₂)
- α-carotene
- γ-carotene
- cryptoxanthin
- β-apo-8'-carotenal

sources (mg/kg) (book 2, tab. 5.4)

boul ceb (1115/115) (book 2, tub.	5.1)	
• animal materials (retin	ol / provitamins A	A)
meat		0.1 / 0.4
liver		30-400 / 300
butter		5-10 / 4-8
fish liver oil, margari	nes	
• plant materials (provite	amins A)	
carrot		20-95
spinach		50-480
apricots		6-20
covered by (%)		
• liver	23	esters, mostly C _{16:0}
• butter	17	
• milk cream	15	

- milk, creamcarrot14
- margarines 9 retinyl acetate

reactions


isomeration (mostly 13-cis a 9-cis), oxidation

consequences

- flour bleaching
- colour changing of citrus juices
- food aroma

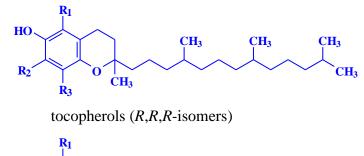
vitamin D (calciferols)

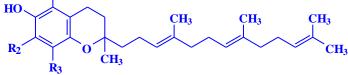
9,10-secosteroids cholecalciferol (vitamin D₃)

reactions

autooxidation (alcohols, ketones) isomeration photodegradation (vitamins D from provitamins D, tachysterols, lumisterols and others)

application


fortification


• margarines

- milk
- cereal breakfast

vitamin E (tocopherols and tocotrienols)

6-hydroxychromans, phytol (C₂₀), tocol

tocotrienols (trans-isomers)

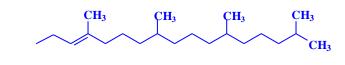
Derivative	R ₁	R ₂	R ₃
α-	CH ₃	CH ₃	CH ₃
β-	CH_3	Н	CH ₃
γ-	Н	CH_3	CH ₃
δ-	Н	Н	CH ₃

sources (mg / 100 g) (book 2, tab. 5.6, 5.7)

٠	plant oils	50-200
٠	plant materials	< 0.5
٠	animal materiala	little

vitamin activity: α -T > β -T > γ -T > δ -T α -TT (1,00-0,27-0,13-0,01-0,30), in dependence on content of unsaturated fatty acids in food

antioxidative activity: $\delta\text{-}T > \gamma\text{-}T > \beta\text{-}T > \alpha\text{-}T$


reactions

oxidation, quinone, dimers and other products


vitamin K

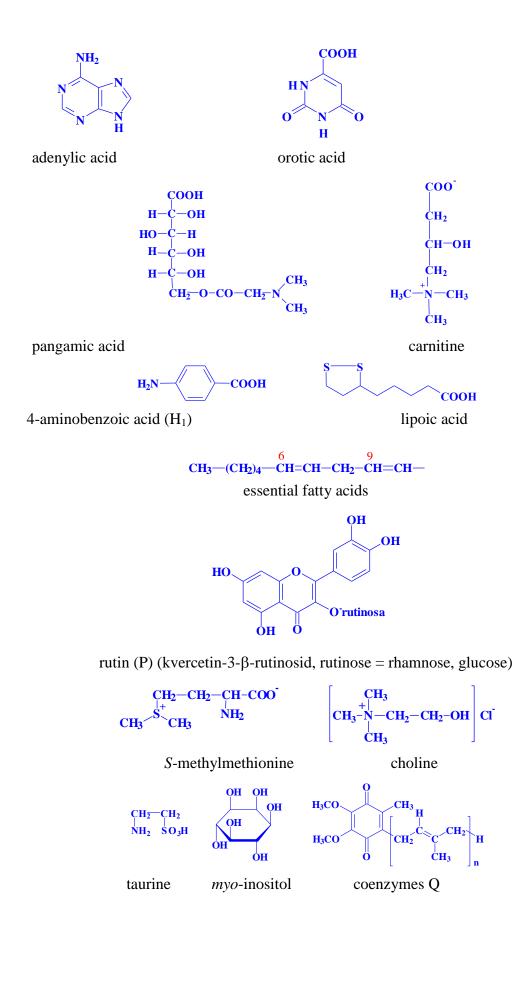
similar structure of coenzymes Q, 1,4-naftoquinone terpenoid chain (phytol C₂₀), basic substance: menadione (naphtho-1,4-quinone)

vitamin K_1 (phylloquinone) R = phytyl C₂₀ 4 isoprenoid units (3 reduced)

vitamin K_2 (farnoquinone) bacteria of intestinal tract 7 isoprenoid units (commonly 4-10, even 0-13) (30 atoms C = dipharnesyl), 3-multiprenyl-

sources (mg / 100 g) (kniha2. tab. 5.8)				
leaf vegetables (cabbage, spinach)	3-4			
garden pea, tomato (meat including liver)	0,1-0,4			
milk	0,002-0,02			

pork liver (forms)


K₁, MK-4, MK 7-10

reactions

photodegradation oxidation (epoxides, 2,3-epoxides)

other biologically active compounds

mostly B group vitamins (B-complex)		
B_8, B_4	adenylic acid (adenine)	
B ₁₃	orotic acid	
B ₁₅	pangamic acid	
B _t	carnitine	
$\mathbf{B}_{\mathbf{x}}, \mathbf{H}_{1}$	4-aminobenzoic acid	
	lipoic acid	
F	essential fatty acids	
Р	rutin (bioflavonoids)	
U	S-methylmethionine	
	choline	
	<i>myo</i> -inositol	
	taurine	
	coenzymes Q	

